Gyrokinetic simulation of fast L-H bifurcation dynamics
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Different experimental observations in L-H transition

Two different types of experimental observations for the role of the
sheared-ExB flow (V';,g) in edge-turbulence bifurcation:

1. Turbulence generated zonal V';,g: Reynolds stress

— Yan et al., IAEA16 & PRL14; Schmitz, IAEA16; Tynan, NF13; Cziegler PPCF 14,
and others]

2. Neoclassically generated V' ;: X-point orbit-loss [Chang et al, PoP02] or
dP/dr

— Kobayashi et al., PRL13, and others (X-point orbit-loss)
— Cavedon, NF17 (Neoclassical dP/dr)

— NSTX finds that P__, is strongly correlated with orbit-loss V', g [Kaye, NF11;
Battaglia, NF13]




1. Turbulent zonal V', ; & L-H bifurcation in experiment

-d<8V,6Vy>/dr

I:G,Reynolds =

Became basis for the predator-prey model [Kim-Diamond, PRLO3,

and others]

When the turbulent Reynolds energy extraction (fdt Fg geynojds)
exceeds the turbulent kinetic energy, the turbulence quenching
can occur.

- 10.0

Unanswered questions if Reynolds stress is solely

responsible for L-H

— Right after the turbulence quenching, what is supporting the
strong V'c,5?

» Several experiments report that a strong V p develops only
well after a fast bifurcation event [Moyer et al., PoP1995;
and others]

— What breaks the symmetry in the Fr,, 45 thus the Reynolds-
driven V', g, direction?
— Why some machines do not see much Reynolds work?
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2. Neoclassically generated V';,; & L-H bifurcation in experiment, w/o seeing
much Reynolds work

L(LCO) H
V'g,g is driven by V p [Cavedon et al., < > >
NF2017, ASDEX-U] e 20 (481 |
* Orbit-loss-driven V', ; [Kobayashi et al., O i
PRL2013, and others] < 10k
NG
* NSTX found P, is strongly correlated with i 10 0.5 _ _
orbit-loss V'g, 5 [Kaye, NF2011; Battaglia, or om0 e, O
NF2013] Zonal flow not seen as bifurcation driver

[Kobayashi., NF 2017]

— Could it be possible that the Reynolds stress and
orbit loss mechanism work together, with one RN
stronger than the other depending upon the VR I
plasma/geometry condition? :fjfff.‘;}1ilf{5_~_-'_-'_-'_-'_-'_-'_—:‘.“{{{{:;;,:f':,;;:ff}'m-/;)rbit loss to

— Could the combined Reynolds and X-loss physics # divertor
provide the missing puzzle pieces in L-H transition

physics?
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Experimental observations of L-H bifurcation time scale, GAM, and LCO

When the heating power is very close to P, the bifurcation is observed to be slow with
many limit cycle oscillations (I-phase) [Schmitz et al. PRL12 and others]

When the heating power is > P,,,, the bifurcation is (forced to be) fast (< 0.1 ms) with an
abbreviated I-phase [Yan PRL14, and others]

GAMs and Limit cycle oscillations observed as L-mode approaches the L-H bifurcation
[Conway et al., PRL11] 0.1ms
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Why has a gyrokinetic L-H study not been done previously?

Scale-inseparable, nonlocal multiscale in space and time

— Turbulence

— Neoclassical with ion orbit loss

— Neutral particles with ionization and charge exchange

— Radial turbulence correlation width ~ plasma gradient scale length ~ orbit width ~ ExB
shearing width ~ neutral penetration length

Magnetic separatrix (q==°), which interfaces two different magnetic topologies

Large amplitude nonlinear turbulence: én/n > 10%

Non-Maxwellian plasma
— Requires fully nonlinear and conserving Collisions

* Long core-edge radial energy balance time ~core-edge confinement time >> GK time

—> Total-f simulation with ~100X more number of marker particles than delta-f simulation in
the complex edge geometry: XGC.

- We thought it would require exascale computer, non-existent yet.



A new strategy for GK simulation of L-H transition

If we were to establish a global transport-equilibrium in an L-mode plasma, move toward the
bifurcation by quasistatically increasing P, .., go through the bifurcation, and build up pedestal, we
would not have enough compute resources to study the transition.

- Requires >100X faster computer than Titan at ORNL.

A new strategy to make the transition physics study possible on present HPCs:

Bifurcation may not be a global transport-equilibrium phenomenon
— But a localized phenomenon at edge
— May not need to wait until GAMs die out

Study only the edge bifurcation itself, as soon as the L-mode edge turbulence is established.

— Force the bifurcation by having P y,.>>P

- Experimentally, a forced L-H bifurcation action could be completed in <0.1ms (Yan-McKee,
PRL2014, and others).

- Take advantage of the fast establishment of edge physics

Low beta electrostatic simulation



In the core plasma, f evolves slowly

For simplicity, let’s use the drift kinetic equation for this argument

of e of .

o7 T (v +va) - Vf + — Bjvy 5= = C(F, f) + Sources/Sinks
In a near-thermal equilibrium,
Let f = fo+0f , with of _ O(ps = 2), pe < 1,24 = 0(p,), A _ O(p, or p?)

fO a U] m
0(8°): vy -V fo=C(fo,fo) = fo = fum : H-theorem
00 f e d 1o

O(8'):  —= = v Vof —vaVfo— —Eyvy = +C(0f)

— Perturbative kinetic theories then yield transport coefficients =O(p« ?)

— [ =fo+df evolveson aslow time scale O(p*w,;)1 ~ ms: core GK time scale

- 6f -GK simulation is cheaper per physics time (small computers), but equilibrates
on a slow time scale O(p.w,;)1 ~ ms.



In edge plasma, f evolves fast

lon radial orbit excursion width ~ pedestal width
& scrape-off layer width

* Orbit loss from <1 and parallel particle loss to |
divertor

— All terms can be large: ~ either O(w,,;) or O(v,)

Vi VfNVd' Vf~ (1) NEE//V///m 0 f/ow No(wbi)
~0.05 msin DIII-D

* fequilibrates very fast:

0 0
8_{ = — (’UH —|—’Ud) -Vf— %Envna—i —|—C(f,f) + S

— Fast-evolving nonthermal kinetic system: OLoF ==
expensive per physics time = extreme scale
computing. However, a short time simulation

The edge turbulence around the
(~0.1ms) can yield meaningful physics.

separatrix saturated while the core
turbulence has not built up.



XGC gerkiHEtiC codes (V&V summary at epsi.pppl.gov)

XGC1: X-point Gyrokinetic Code 1

Gyrokinetic ions and electrons

Lagrangian PIC + Eulerian 5D grid

Steep electrostatic pedestal ordering [Hahm PoP 2009]
Heat and momentum source in core

Monte Carlo neutrals with wall recycling

Fully nonlinear Fokker-Planck Coulomb collision operation
Logical wall-sheath

Unstructured triangular mesh

Capabilities

ES with GKions + drift-kinetic electrons [C.S. Chang PP11.72,
D.P. Stotler TP11.85, I.K. Charidakos TP11.84]

GK ions + fluid electrons [R. Hager TP11.97]

EM with fully implicit drift-kinetic electrons (partially verified)
Gyrokinetic electrons for ETG [J. Chowdhury PP11.51]

RMP and stellarator [J. Kwon TP11.95, T. Moritaka JP11.147,
M. Cole CP11.70]

Multiscale coupling [J. Dominski TP11.111, B.

Sturdevant JP11.146]

Full-f + Neutral particles + Unstructured
triangular grid

- Expensive to simulate

- Requires extreme scale HPCs
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For the present L-H bifurcation study, we have performed a
low-beta electrostatic edge simulation using XGC1

Plasma input condition
e (C-Mod #1140613017 in L-mode, single-null
*  B.=0.01% < m_,/m, in the bifurcation layer
« V B-drift direction has been flipped to be into the divertor

Include the most important multi physics
* Neoclassical kinetic physics
* Nonlinear electrostatic turbulence
* |TG, TEM, Resistive ballooning, Kelvin-Helmholtz, other drift waves
* Neutral particle recycling with CX and ionization
* Realistic diverted geometry

Electromagnetic correction to the present result is left for a future work.
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An L-mode plasma from C-Mod (beta~0.01%)
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* Edge temperature increases from heat accumulation
* In a developed H-mode pedestal, dV/dr>0 at W~0.97.Any bifurcation
mechanism needs to lead to this sign.
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Electrostatic potential profile measured at
outboard midplane

300 T
V p driven E. is still negligible and a
200 F strong E, <0 (or ®<0) is not developed
yet. Flow terms are more important
100 - at this time. Similar to [Moyer et al.,
0 | PoP1995]
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Transition to significant ®"’>0 (or p<0) is a noticeable feature across the turbulence bifurcation time in the
edge transition layer, showing a signature of ion X-loss dominant charge loss after the bifurcation.

However, @ is still >0 in most of the edge layer; development of V p would yield ®< 0 and a deeper E, -
well.



Overview of the turbulence behavior at bifurcation

. 1~0.175-0.21ms, suppression of lower frequency turbulence occurs, and higher

frequency turbulence is generated (shades of green, eddy tearing by ExB shearing, to be
shown).

. t>0.21ms, suppression of all frequency turbulence follows.
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Time-radius behavior of the sheared ExB flow V'

PwnNeE

t=0.12ms, V; settles down in W~0.97-98

t<0.175ms, V' remains negative in the edge layer (p>0)

t~0.175ms, something pushes the V; to be >0 in the edge layer (p<0)

t >0.2ms, sheared ExB flow locks into the mean ExB shearing in the bifurcation
layer.

V¢ (Hz) <10°
6
0.96 Transition layer is at
4 0.96<W,<0.98, agreeing
0.94 with C-Mod
%5092 2 [Cziegler PPCF2014]
“ 0.9 and other devices.
3 0
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Detailed local analysis at W,=0.975:
(0.96<W,<0.98, per Cziegler PPCF 2014)

Important physics quantity is the ExB
shearing rate, V¢, not V..
The bifurcation criterion is identified to
be V. > 300 kHz
(Maximum growth rate of dissipative
TEMs [Romanelli PoP 2007] ).
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|

Transport fluxes and Reynolds force o.om'-‘--:E:szz;f&%mzz

* Edge transport fluxes are non-local and follow the GAM 5 ; _— _;_:'
behavior, with suppression at the “critical” time. o005} | RN TN
* The Reynolds force from turbulence Fg gy nods = '°'°‘°‘:’=-:‘ : o
-d<8V,6Vy>/dr fluctuates in both directions, and exhibits g ' ;
shearing
* However, the Reynolds force is a non-player after the E l
bifurcation. b Y
o 0.2

* Questions:
— Why is the negative Reynolds force not effective?
— What is keeping the turbulence suppressed after the
bifurcation?
— What is pushing V' further to positive after 0.175 ms?

* |t is reasonable to conjecture that there is another force in
the positive V¢ direction making the edge plasma more
negative.

Reynolds force (10’m/s?)




The X-point orbit-loss physics provides answers to

all three question

Answers:

s [Chang PoP 2002]

— The negative Reynolds force is canceled with orbit-
loss force and not effective.
— Orbit-loss force is pushing V', ; further to positive

direction after 0.175 m:s.

— This V’¢g is keeping the turbulence suppressed after

the bifurcation.
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Unfavorable V B drift case is also studied

Unfavorable VB

V; ~ 300 kHz

Turbulence
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LCO-type GAM is stronger before the bifurcation.
Turbulence energy is getting weaker with strong LCO-type GAM amplitude.
GAMs persist with the bifurcation.
The bifurcation criterion (V¢' ~ 300 kHz) is similar with the favorable V B case
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Poloidal Flux

More robust GAM behavior with unfavorable VB
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Even in electrostatic simulation, weakly coherent modes at
high frequency (2150 kHz) survives with unfavorable VB

Turb. amplitude vs. time and f
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Connection to I-mode transition physics is under study
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Summary and Discussions

A forced, fast L-H like bifurcation physics has been revealed, with transport suppression
in both the heat and particle channels.

The turbulent Reynolds stress and the neoclassical X-loss physics work together in
achieving the L-H bifurcation.

— When combined together, the puzzle pieces appear to come together.
— How will the geometry and plasma condition change their combination?
— How will this affect P _,in ITER with small p,/a?

Critical ExB shearing rate of unfavorable V B case is the same in the favorable V B case,
but GAM LCO is stronger and weakly coherent modes persist through the bifurcation.

Isotope effects is being studied in DIII-D L-H bifurcation (with G. McKee, L. Smith and Z.
Yan).

EM correction to the present electrostatic result will be studied in the future.
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BACKUP



Why does the turbulence get cut-off around 0.18ms?
What triggers the bifurcation action?

ty t

: —Turb. intensity (x100)
i \==— Reynolds consumption rate

The normalized, turbulence 15
Reynolds consumption rate
P=<V V>V / (VeriV 12/2)
becomes >1 in the beginning
of the bifurcation action (I-
phase), but becomes <1 after
that - Zonal flows cannot be
responsible for keeping the A

turbulence suppressed. 016

P/<Vl2> (10 1/s)

1556.0 1556.5 1557.0 1557.5 1558.0 1558.5
time (ms)
[Yan PRL 2014] reported a very
similar behavior in the Reynolds
0.2 0.22 024 026 consumption rate.
Time (ms)

Relevance of the turbulence consumption rate?
Eddie-tearing by ExB shearing could also be
responsible for this cut-off.
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